Какое вещество имеет оптические изомеры. Оптическая (зеркальная) изомерия. Физические причины оптической активности

Ранее были описаны структурная изомерия, обусловленная различным порядком чередования атомов и связей в молекулах, и два вида пространственной изомерии: поворотной и геометрической (цис-транс ), связанные с различным расположением фрагментов молекул одинаковой структуры в пространстве. Существует ещё один вид стереоизомерии – оптическая изомерия.

Оптические изомеры одинаковы по всем своим физическим и химическим свойствам и различаются лишь в двух отношениях.

1 При кристаллизации они образуют кристаллы, не имеющие плоскости симметрии и относящиеся друг к другу как предмет к своему зеркальному отображению. Это свойство позволило Пастеру открыть явление оптической изомерии. При кристаллизации винной кислоты он визуально обнаружил кристаллы двух различных типов и разделив их, выделил чистые стереоизомерные формы винной кислоты.

2 Оптические изомеры по разному относятся к поляризованному свету.

В луче света колебания электрического и магнитного векторов происходят во взаимно-перпендикулярных направлениях, а также перпендикулярно направлению распространению луча. Причём направление колебаний, например, электрического вектора хаотически меняется во времени, изменяя соответственно направление колебания вектора магнитного. В поляризованном луче колебания электрического и магнитного векторов совершаются для каждого в одной строго фиксированной плоскости, плоскости поляризации . При прохождении поляризованного луча через некоторые прозрачные жидкие и кристаллические вещества плоскость поляризации поворачивается. Соединения, вращающие плоскость поляризации поляризованного луча, называются оптически деятельными или оптически активными . Для количественного сравнения оптической деятельности различных веществ, вычисляют величину удельного вращения . Поскольку величина угла, вращения плоскости поляризации света помимо природы вещества зависит еще от температуры, длины волны света, толщины слоя вещества, через который проходит поляризованный свет, а для растворов ещё от растворителя и концентрации вещества, удельное вращение при постоянной температуре и длине волны света равно

где α – угол поворота плоскости поляризации при толщине слоя l и плотности вещества d , t – температура, D – фиксированная длина волны желтой линии из спектра натрия.

Для раствора

,

где С – концентрация раствора в граммах вещества, на 100 мл раствора.

Молочная кислота, получаемая при ферментации сахарозы с помощью бактерий, вращает плоскость поляризации света влево (против часовой стрелки). Она называется левовращающей или левой молочной кислотой и обозначается: (–) – молочная кислота.

Молочная кислота, вращающая плоскость поляризации света вправо , называется правой молочной кислотой и обозначается: (+) – молочная кислота. Эта оптическая форма молочной кислоты выделяется из мышц животных и называется мясомолочной кислотой.

В кристаллической фазе оптическая активность вещества связана с асимметрией строения кристалла . В жидкой и газовой фазах она связана с асимметрией молекул . В 1874 г. Вант-Гофф и Лебель – основоположники стереохимической теории – почти одновременно отметили, что оптически активные вещества содержат в своих молекулах хотя бы один углерод, связанный с четырьмя различными группами . Такие атомы углерода называются асимметрическими. Наличие в структуре молекулы асимметрического атома углерода является признаком асимметрии молекул соединения, а следовательно, и оптической активности вещества.

При рассмотрении оптической изомерии асимметрические атомы углерода обычно отмечают звездочкой (*):

Как видно из структурных формул, соединения, содержащие асимметрический атом углерода, не имеют плоскости симметрии.

Оптические изомеры молочной кислоты, т.е. (–) и (+)-формы этой кислоты, имеют различное пространственное расположение отдельных групп в молекуле и являются зеркальными отображениями друг друга. Отражение в зеркале всякого предмета , не имеющего плоскости симметрии, не тождественно предмету , а представляет собой его антипод (энантиомер).

Например, отражение человеческой фигуры в зеркале не тождественно оригиналу. Левая сторона человека представляется в зеркале как правая и наоборот. Из рисунка видно, что правая модель при наложении в пространстве не совмещается с левой. Это свойство объекта быть несовместимым со своим отображением в плоском зеркале обычно называют хиральностью .

Оптические изомеры, являющиеся зеркальным отражением друг друга называются антиподами (энантиомерами ). Они вращают плоскость поляризации в разные стороны на одинаковые углы .

Молочная и мясомолочная кислоты являются антиподами (энантиомерами). Эти стереоизомеры вращают плоскость поляризации в разные стороны на одинаковые углы.

Смесь равных количеств антиподов является оптически недеятельной из-за компенсации вращения и называется рацематом .

Так, молочная кислота, полученная синтетически, не влияет на поляризованный свет. Она состоит из смеси равных количеств левой и правой форм, является оптически недеятельной и обозначается (±) – молочная кислота.

Для удобства изображения пространственного строения оптически деятельных соединений введены так называемые проекционные формулы, предложенные Фишером , получаемые проецированием тетраэдрических моделей молекул на плоскость чертежа

При пользовании ими следует помнить, что перемещение проекционных формул, наложение их друг на друга разрешается только в плоскости чертежа . Подразумевается также, что группы сверху и снизу находятся за плоскостью чертежа, боковые – перед ней. Проекционные формулы правой и левой молочных кислот при соблюдении этих правил естественно не совмещаются.

Очень важным моментом оптической изомерии является то, что величина и направление вращения плоскости поляризации света не находятся в прямой очевидной зависимости от конфигурации (пространственного строения) соединения.

Например, сложные и простые эфиры, правой молочной кислоты, имея такую же конфигурацию, как и сама кислота, обладают левым вращением.

Отсюда следует, что знак вращения одного из членов ряда сходных по химическому строению веществ не может ещё служить характеристикой конфигурации и знака вращения остальных его членов.

Возникает вопрос, известны ли конфигурации оптических изомеров для различных веществ и как они определяются. Химические методы не позволяют установить абсолютную (истинную) конфигурацию антиподов из-за тождественности химических свойств антиподов. В то же время этими методами можно определить относительную конфигурацию оптических изомеров. Оптически активные соединения химическим путём можно превращать друг в друга без нарушения конфигурации. Тогда, если известна конфигурация исходного «эталонного» соединения, получаемое из него соединение будет иметь ту же конфигурацию.

В 1891 г. Фишер, а в 1906 г. Розанов предложили использовать в качестве такого относительного стандарта правый (+)–глицериновый альдегид . Ему произвольно приписали конфигурацию «D ». Его антиподу, (–)-глицериновому альдегиду , соответственно дана конфигурация «L ».

При этом появилась возможность устанавливать относительную конфигурацию оптических стереоизомеров химическим путём. В этом случае производным D(+)-глицеринового альдегида приписывается D-относительная конфигурация.

Например, относительная конфигурация молочной кислоты была установлена превращением глицеринового альдегида в молочную кислоту.

Оказалось, что D(+)-глицериновому альдегиду по конфигурации соответствует левая D(–)-молочная кислота.

Лишь в 1951 году рентгеноскопическим анализом была установлена абсолютная конфигурация D-глицеринового альдегида. Оказалось, что выбор его конфигурации был правилен. Таким образом, абсолютные конфигурации многих веществ в настоящее время стали известны.

Кроме описанной DL -номенклатуры для обозначения конфигурации оптических стереоизомеров используется так называемая RS -номенклатура Кана, Ингольда, Прелога , не связанная с конфигурацией опорного соединения («стандарта»). Она описана в учебной литературе.

Молочная кислота , СН 3 –СНОН–СООН

Молочную кислоту получают из нитрила молочной кислоты или молочнокислым брожением сахаристых веществ.

Используют её в кожевенном производстве и при крашении тканей.

Яблочная кислота

Это двухосновная, трёхатомная кислота. В химическом отношении она обнаруживает свойства α- и β-гидроксикислот, так как гидроксил по отношению к одной кислотной группе находится в α-положении, а по отношению к другой – в β-положении. При восстановлении она даёт янтарную кислоту, при дегидратации – малеиновую или фумаровую:

HOOC – CH – CH – COOH → HOOC – CH = CH – COOH + H 2 O

В яблочной кислоте имеется один асимметрический атом углерода, она оптически активна.

Левая и правая яблочные кислоты плавятся при 100 °С. Рацемат – при 130–131 °С. В природе встречается левая форма яблочной кислоты: в рябине, яблоках, винограде.

Винные кислоты (дигидроксиянтарные)

Они имеют одинаковую структурную формулу

и различаются пространственным строением.

Как следует из формулы, винная кислота имеет два асимметрических атома углерода. Число оптических изомеров для соединений, имеющих в структуре молекулы несколько асимметрических атомов углерода, находится по формуле N =2 n , где n – число асимметрических атомов углерода.

Следовательно, для винной кислоты следует ожидать существования четырёх оптических стереоизомеров:

В соответствии с правилами обращения с проекционными формулами, при наложении последних двух форм друг на друга они оказываются идентичными (одну из форм следует повернуть в плоскости чертежа на 180°). Таким образом, вместо четырех стереоизомерных форм винная кислота реализуется в трех. Кроме того, третий стереоизомер (III) оказывается оптически недеятельным из-за своей симметрии (на рисунке показана плоскость симметрии): вращение плоскости поляризации света, вызываемое верхним тетраэдром, полностью компенсируется равным по величине, но противоположным по знаку вращением нижнего. Перед нами пример стереоизомерной формы с асимметрическими углеродными атомами оптически недеятельной вследствие ее симметрии. Такие стереоизомеры называют мезоформами.

Стереоизомеры вещества, не являющиеся зеркальным отображением друг друга, называются диастереоизомерами. В соответствии с этим определением, первая и вторая пространственные формы винной кислоты являются диастереомерами по отношению к мезовинной кислоте (и наоборот).

Поскольку антиподы имеют одинаковое (только зеркально обратное) строение, их свойства за исключением отношения к поляризованному свету тоже одинаковы. Диастереомеры не одинаковы по своему пространственному строению, поэтому их свойства несколько различаются.

Заключая анализ пространственной изомерии винной кислоты, можно сказать, что она представлена двумя антиподами (формы I и II), их рацематом, называемым виноградной кислотой, и диастереоизомерной мезоформой (III).

Правовращающая, (+)-винная кислота весьма распространена в природе, особенно её много в соке винограда. При брожении виноградного сока она выделяется в виде винного камня, состоящего из кислого виннокислого калия.

Эта соль применяется в качестве протравы при крашении и печатании тканей.

Другая, калий-натриевая соль (+)-винной кислоты – так называемая сегнетова соль,

используется в качестве пьезокристалла в радиотехнике. Она входит в состав фелинговой жидкости, которая употребляется для аналитического определения восстановителей (например, альдегидов).

Мезовинная кислота получается вместе с виноградной при кипячении в течении нескольких часов (+)-винной кислоты с избытком едкого натра.

Лимонная кислота

Она довольно часто встречается в природе: в свекле, крыжовнике, винограде, лимонах, малине, листьях табака. Оптически недеятельна.

Лимонная кислота используется в пищевой промышленности, при крашении, в фотографии, для консервирования крови и т.д.

Альдоновые кислоты

Альдоновые кислоты – это полигидроксикарбоновые кислоты общей формулы HOCH 2 n COOH, формально являющиеся продуктами окисления альдегидной группы углеводов (альдоз). Наиболее типичным лабораторным методом синтеза альдоновых кислот является окисление легкодоступных альдоз бромом в его водном растворе.

Альдоновые кислоты и их производные играют важную роль в синтетической химии моносахаридов.

Методы разделения рацематов на оптически активные компоненты

В настоящее время стремительно растет потребность в энантиомерно чистых веществах для получения современных высокоэффективных медицинских препаратов, а также нужд сельского хозяйства и защиты лесов: получения новых высокоактивных инсектицидов, гербицидов, фунгицидов и других веществ избирательного действия для борьбы с вредными организмами. Получение энантиомерно чистых веществ для этих целей возможно либо на путях разработки методик их полного химического синтеза (ряд достижений в этой области отмечен присуждением Нобелевских премий по химии), либо разделением рацемических смесей. Рассмотрим принципы некоторых методов разделения рацематов на оптически активные компоненты.

Механический отбор. При кристаллизации рацематы иногда кристаллизуются отдельно в виде правой и левой форм. Причем их кристаллы по форме относятся друг к другу как предмет к своему зеркальному отражению. В этом случае их можно отобрать механически по внешнему виду.

Биохимическое разделение. Оно основано на том, что микроорганизмы в процессе своей жизнедеятельности способны потреблять предпочтительно лишь один из оптических изомеров. Обычно эта оптическая форма более распространена в природе. Поэтому при размножении и прорастании грибков в растворе рацемата через некоторое время остается только одна оптически активная форма.

Способы, основанные на различии свойств диастереомеров

Так, соли антиподов оптически деятельной кислоты с одним и тем же оптически деятельным основанием должны давать диастереомеры различной растворимости. Это позволяет разделить их кристаллизацией.

КУРСОВАЯ РАБОТА

Тема: "Оптическая изомерия"

Введение

1. Оптическая активность

1.2 б. Квантовая теория

1.2 в. Корпускулярная теория

2. Хиральные молекулы

2.1 Точечные группы симметрии

2.3 Типы хиральности

3. Номенклатура энантиомеров

3.1 По конфигурации: R - и S

3.3 По конфигурации: D - и L-

4.2 а. Химическая корреляция

5.3 Механическое расщепление

Заключение

В 1815 французский физик Жан Батист Био и немецкий физик Томас Зеебек установили, что некоторые органические вещества (например, сахар или скипидар) обладают свойством вращать плоскость поляризации света, в кристаллическом, в жидком, растворенном и даже газообразном состоянии (Впервые это явление обнаружил в 1811г. французский физик Франсуа Доминик Араго у кристаллов кварца). Так было доказано, что оптическая активность может быть связана не только с асимметрией кристаллов, но и с каким-то неизвестным свойством самих молекул. Оказалось, что некоторые химические соединения могут существовать в виде как право-, так и левовращающих разновидностей, причем самый тщательный химический анализ не обнаруживает между ними никаких различий. Это был новый тип изомерии, которую назвали оптической изомерией. Оказалось, что кроме право - и левовращающих, есть и третий тип изомеров - оптически неактивные. Это обнаружил в 1830 знаменитый немецкий химик Йёнс Якоб Берцелиус на примере виноградной (дигидроксиянтарной) кислоты НООС-СН (ОН) - СН (ОН) - СООН: эта кислота оптически неактивна, а винная кислота точно такого же состава обладает в растворе правым вращением. Позднее была открыта и не встречающаяся в природе "левая" винная кислота - антипод правовращающей.

Различить оптические изомеры можно с помощью поляриметра - прибора, измеряющего угол поворота плоскости поляризации. Для растворов этот угол линейно зависит от толщины слоя и концентрации оптически активного вещества (закон Био). Для разных веществ оптическая активность может изменяться в очень широких пределах. Так, в случае водных растворов разных аминокислот при 25° С удельная активность (она обозначается как D и измеряется для света с длиной волны 589 нм при концентрации 1 г/мл и толщине слоя 10 см) равна - 232° для цистина, - 86,2° для пролина, - 11,0° для лейцина, +1,8° для аланина, +13,5° для лизина и +33,2° для аспарагина.

Современные поляриметры позволяют измерять оптическое вращение с очень высокой точностью (до 0,001°). Подобные измерения позволяют быстро и точно определить концентрацию оптически активных веществ, например, содержание сахара в растворах на всех стадиях его производства - начиная от сырых продуктов и кончая концентрированным раствором и патокой.

Оптическую активность кристаллов физики связывали с их асимметричностью; полностью симметричные кристаллы, например, кубические кристаллы поваренной соли оптически неактивны. Причина же оптической активности молекул долгое время оставалась совершенно загадочной. Первое открытие, проливавшее свет на это явление, сделал в 1848 никому тогда не известный Луи Пастер. Пастер, который выделил два антипода винной кислоты, которые получили название энантиомеров (от греч. enantios - противоположный). Пастер ввел для них обозначения L - и D-изомеров (от латинских слов laevus - левый и dexter - правый). Позднее немецкий химик Эмиль Фишер связал эти обозначения со строением двух энантиомеров одного из наиболее простых оптически активных веществ - глицеринового альдегида ОНСН2-СН (ОН) - СНО. В 1956 по предложению английских химиков Роберта Кана и Кристофера Ингольда и швейцарского химика Владимира Прелога для оптических изомеров были введены обозначения S (от лат. sinister - левый) и R (лат. rectus - правый); рацемат обозначают символом RS. Однако по традиции широко используются и старые обозначения (например, для углеводов, аминокислот). Следует отметить, что эти буквы указывают лишь на строение молекулы ("правое" или "левое" расположение определенных химических групп) и не связаны с направлением оптического вращения; последнее обозначают знаками плюс и минус, например, D (-) - фруктоза, D (+) - глюкоза.

Теория, объясняющая отличие друг от друга молекул антиподов была создана голландским ученым Вант-Гоффом. Согласно этой теории, молекулы, как и кристаллы, могут быть "правыми" и "левыми", являясь зеркальным отражением друг друга. Подобные структуры, которые отличаются друг от друга как правая рука от левой, получили название хиральных (от греч. heir - рука). Таким образом, оптическая активность - следствие пространственной изомерии (стереоизомерии) молекул.

оптическая изомерия эвантиомер хиральность

Теория Вант-Гоффа, заложившая основы современной стереохимии, завоевала общее признание, а ее создатель в 1901 стал первым лауреатом Нобелевской премии по химии.

1. Оптическая активность

Оптическая активность - это способность среды (кристаллов, растворов, паров вещества) вызывать вращение плоскости поляризации проходящего через нее оптического излучения (света).

Впервые оптическая активность была обнаружена в 1811 г.Д. Араго в кристаллах кварца. В 1815 г.Ж. Бои открыл оптическую активность чистых жидкостей (скипидара), а затем растворов и паров многих, главным образом органических веществ. Ж.Био установил, что поворот плоскости поляризации происходит либо по часовой стрелке, либо против нее, если посмотреть навстречу ходу лучей света и в соответствии с этим разделил оптически активные вещества на правовращающие (вращающие положительно, т.е. по часовой стрелке) и левовращающие (отрицательно вращающие) разновидности. Наблюдаемое значение угла поворота плоскости поляризации в случае раствора связано с толщиной образца и концентрацией оптически активного вещества.

Оптически активными веществами называют лишь те вещества, которые проявляют естественную оптическую активность. Существует также и искусственная или наведенная оптическая активность. Ее проявляют оптически неактивные вещества при помещении в магнитное поле (эффект Фарадея).

1.1 Оптически активные вещества

Оптически активные вещества подразделяются на два типа.

К первому типу относятся вещества, которые оптически активны лишь в кристаллической фазе (кварц, киноварь). Ко второму типу относятся вещества, которые оптически активны в любом агрегатном состоянии (например, сахара, камфара, винная кислота). У соединений первого типа оптическая активность является свойством кристалла как целого, но сами молекулы или ионы, составляющие кристалл, оптически неактивны. Кристаллы оптически активных веществ всегда существуют в двух формах - правой и левой; при этом решетка правого кристалла зеркально симметрична решетке левого кристалла и никакими поворотами и перемещениями левый и правый кристаллы не могут быть совмещены друг с другом. Оптическая активность правой и левой форм кристаллов имеет разные знаки и одинакова по абсолютной величине (при одинаковых внешних условиях). Правую и левую форму кристаллов называют оптическими антиподами.

У соединений второго типа оптическая активность обусловлена дисимметрическим строением самих молекул. Если зеркальное отображение молекулы никакими вращениями и перемещениями не может быть наложено на оригинал, молекула оптически активна; если такое наложение осуществить удается, то молекула оптически неактивна. (Под зеркалом понимают отражатель, лежащий вне молекулы, и отражение дает отображение всей молекулы).

Асимметрические молекулы и дисcимметрические молекулы не одно и то же. Асимметрические молекулы не имеют никаких элементов симметрии, тогда как в дисcимметрических молекулах некоторые элементы симметрии остаются. Диcсимметрия есть нарушение максимальной симметрии объекта. Оптическую активность проявляют все асимметрические молекулы, но далеко не все диссимметрические молекулы. Оптическая активность связана лишь с дисcимметрией, обусловливающей несовместимость объекта с его зеркальным отображением. Такой вид диссимметрии, получил название хиральность. Хиральные объекты несовместимы в пространстве и представляются как зеркальные отображения друг друга. Оптически активная молекула хиральна, а оптически неактивная ахиральна, однако если молекулу нельзя совместить с ее зеркальным отображением, то зеркальное отображение соответствует другой, отличной молекуле, которую, в принципе, можно синтезировать. Синтезированное зеркальное отображение хиральной молекулы будет ее реальным оптическим изомером. Чистое оптически активное соединение имеет только два оптических изомера (т.к. каждому объекту соответствует лишь одно зеркальное отображение). Оптические изомеры называются энантиомерами (или иногда энантиоморфами). Удельное вращение энантиомеров одинаково по абсолютной величине и противоположно по знаку: один энантиомер левовращающий, а второй правовращающий. Кроме знака вращения все другие физические и химические свойства энантиомеров в газовой фазе, а также в ахиральных жидких средах одинаковы. Однако, если жидкая среда хиральна (например, в раствор добавлен хиральный реагент или катализатор, или сам растворитель хирален) свойства энантиомеров начинают различаться. При взаимодействии с другими хиральными соединениями, отзывающимися на зеркальную изомерию молекул, энантиомеры реагируют с различными скоростями. Особенно ощутимо различие в физиологическом и биохимическом действии энантиомеров, что связано с энантиомерией биологических реагентов и катализаторов. Так, природные белки состоят из левых оптических изомеров аминокислот и поэтому искусственно синтезированные правые аминокислоты организмом не усваиваются; дрожжи сбраживают лишь правые изомеры сахаров, не затрагивая левые и т.д. Общее правило состоит в том, что энантиомеры проявляют идентичные свойства в симметричном (ахиральном) окружении, а в несимметричном (хиральном) окружении их свойства могут изменяться, Это свойство используется в асимметрическом синтезе и катализе. Смесь равных количеств энантиомеров, хотя и состоит из хиральных молекул, оптически неактивна, т.к. одинаковое по величине и противоположное по знаку вращение взаимно компенсируется. Такие смеси называют рацемическими смесями или рацематами. В газообразном состоянии, жидкой фазе и в растворах свойства рацематов обычно совпадают со свойствами чистых энантиомеров, однако в твердом состоянии такие свойства, как температура плавления, теплота плавления, растворимость, обычно отличаются.

1.2 Физические причины оптической активности

В ахиральной среде два энантиомера имеют одинаковые химические и физические свойства, но их легко отличить друг от друга по специфическому взаимодействию со светом. Один из энантиомеров вращает плоскость поляризации линейнополяризованного (плоскополяризованного) света вправо, а другой энантиомер - на точно такой же угол влево.

1.2 а. Феноменологическая модель

Феноменологическую модель оптической активности предложил Френель еще в 1823 г. Она основана на волновой теории света и с позиций современной науки не является достаточно строгой. Тем не менее, эта модель дает очень наглядное представление о причинах оптической активности и других явлениях, связанных с поглощением света хиральным веществом, в рамках классической электродинамики, поэтому ее часто используют и в настоящее время.

Согласно классическим представлениям, линейнополяризованный (плоскополяризованный) свет характеризуется тем, что векторы составляющих его зависимых от времени электрического (Е) и магнитного (Н) полей осциллируют во взаимно перпендикулярных плоскостях и их изменения носят синусоидальный характер во времени и в пространстве. Плоскополяризованный свет можно рассматривать как комбинацию левого и правого циркулярнополяризованных лучей, движущихся в фазе по отношению друг к другу. Если в начальной точке времени 1 электрические векторы левого и правого циркулярнополяризованных лучей ориентированы вверх, то в точке 2 вектор правого луча ориентирован вправо, а вектор левого луча влево (если смотреть в направлении движения света по оси z). В точке 3 векторы обоих лучей ориентированы вниз, в точке 4 вектор правого луча ориентирован влево, а вектор левого луча вправо, и т.д. Таким образом, правый и левый циркулярнополяризованные лучи обладают соответственно правой и левой спиральностью вращения вектора электрического поля. Сумма этих лучей дает плоскополяризованный луч, в пространственно-временных точках 1,3 и 5 векторы суммируются, а в точках 2 и 4 взаимно уничтожаются. Расстояние между точками 1 и 5 соответствует одному витку правой или левой спирали или длине плоской волны.

При попадании света на любую молекулу в прозрачной среде, скорость его замедляется (уменьшение скорости пропорционально показателю преломления среды), так как свет взаимодействует с электронными оболочками молекул. Степень такого взаимодействия зависит от поляризуемости молекулы.

Плоско (линейно) поляризованный световой луч (а), правый (б) и левый (в) циркулярно-поляризованные лучи, (г) - результат взаимодействия электрических векторов лучей (б) и (в), находящихся в фазе.

Если среда ахиральна, две циркулярнополяризованные составляющие проходят с одинаковой скоростью (т.е. с одинаковыми показателями преломления для правого и левого лучей). Однако хиральные молекулы проявляют анизотропию поляризуемости, которая зависит от того, левую или правую спиральность имеет циркулярнополяризованный луч. При прохождении через хиральную среду в общем случае неодинаковы не только скорости, но и коэффициенты поглощения левого и правого циркулярнополяризованных компонент плоскополяризованного света. В результате векторы для правого и левого прошедшего через образец лучей будут иметь разную амплитуду, а результирующий вектор будет описывать эллиптическую траекторию. В общем, при прохождении плоскополяризованного света через хиральную среду вектор электрического поля начинает описывать эллипс (эллиптическая поляризация) с повернутой главной осью.

Угол вращения уменьшается с увеличением длины волны падающего света. Однако это справедливо лишь для света, длина волны которого больше длины волны максимума поглощения в электронном спектре данного вещества. Изменение оптического вращения при изменении длины волны называется дисперсией оптического вращения (ДОВ). Разность поглощения правой и левой компонент называется круговым дихроизмом (КД). Количественной характеристикой КД служит угол эллиптичности y, величина которого обратно пропорциональна длине волны

КД открыт Э. Коттоном в 1911 г. и его часто называют эффектом Коттона. ДОВ и КД вместе называются хирооптическими явлениями; в своей основе они связаны с электронными переходами в хиральном окружении. Эффект Коттона, т.е. превращение плоскополяризованного света в эллиптически поляризованный заметно проявляется главным образом вблизи полос собственного (резонансного) поглощения вещества.

(а) - Взаимодействие сдвинутых по фазе компонентов равной амплитуды, (б) - взаимодействие находящихся в фазе компонентов разной амплитуды, (в) - суммарный результат сдвига по фазе.

1.2 б. Квантовая теория

Квантовую теорию оптической активности построил в 1928 г. бельгийский физик Л. Розенфельд. С позиций современной науки эта теория рассматривается как более строгая. Для объяснения оптической активности оказалось необходимым учитывать взаимодействие электрических и магнитных дипольных моментов, наведенных в молекуле полем проходящей световой волны.

1.2 в. Корпускулярная теория

В настоящее время возрождается интерес к корпускулярной теории света, которой придерживался еще Ньютон. Частицей света является фотон - реальная элементарная частица. В фотонной теории поляризацию света связывают с поляризацией фотонов, которая обусловлена наличием у этих частиц спина и его определенной направленностью в пространстве. Спиновые квантовые числа - это как бы дополнительные внутренние степени свободы частицы. В отличие от электронов, имеющих спин J = 1/2, спин фотона J = 1. (Это означает, что электроны принадлежат к классу фермионов, для которых справедлив запрет Паули, а фотоны - к классу бозонов, для которых не действует принцип запрета). Согласно квантовой механике, частица со спином J и ненулевой массой покоя имеет (2J + 1) внутренних квантовых состояний, определяющих ее поляризацию, т.е. степень асимметрии частицы в пространстве. Но масса покоя фотона равна нулю, и поэтому число спиновых состояний на единицу меньше, т.е. равно двум (+1 и - 1). Это означает, что возможны лишь две ориентации проекции спина фотона на направление его движения: параллельная и антипараллельная. В таком случае возникает понятие "спиральность частицы". Если проекция спина на направление движения положительна, то говорят, что частица имеет правовинтовую (правую) спиральность, а если отрицательна - левовинтовую (левую) спиральность. Спиральные объекты хиральны, поэтому фотоны являются как бы хиральными частицами.

Поскольку фотоны обладают целочисленным спином, в одном и том же состоянии может находится любое число фотонов. Это обусловливает возможность описания электромагнитных взаимодействий с участием большого числа фотонов в рамках классической (а не только квантовой) механики. Циркулярно-поляризованный свет можно рассматривать как поток фотонов, имеющих только правую или только левую спиральность. Плоскополяризованный свет состоит из одинакового количества "левых" и "правых" фотонов. Взаимодействие по-разному поляризованных фотонов с хиральной анизотропной средой происходит неодинаково, что приводит к хироптическим эффектам.

Ахиральная молекула не вращает плоскость поляризации света только при определенной ее ориентации по отношению к падающему лучу. Например, ахиральная молекула, имеющая плоскость симметрии, не вращает плоскость поляризации лишь в том случае, если плоскость поляризации совпадает с плоскостью симметрии. Все же остальные молекулы, не ориентированные таким образом, вращают плоскость поляризации, даже не будучи хиральными. Однако в целом образец не вращает, так как в массе молекулы ориентированы беспорядочно, и одни молекулы вращают плоскость поляризации в одном направлении, а другие молекулы, встречающиеся на пути светового луча, вращают ее в противоположную сторону. Таким образом коллектив ахиральных молекул имеет суммарное вращение, равное нулю, хотя каждая молекула может вращать плоскость поляризации. В случае хиральных соединений молекул противоположной ориентации (если это не рацемическая смесь) просто не может существовать, и вращение наблюдается.

2. Хиральные молекулы

В случае простых молекул легко проводится зрительное распознавание несовместимости с зеркальным отображением. Однако многие органические молекулы настолько сложны, что такой способ требует очень развитого пространственного воображения, которым обладают далеко не все.

2.1 Точечные группы симметрии

Шар самый симметричный объект, его не возможно отразить в зеркале. Он всегда выглядит одинаково. Тетраэдр "менее симметричен", чем шар, поскольку вокруг высоты его нужно повернуть лишь на определенный угол (1200), чтобы он выглядел так же, как до поворота. Вращение вокруг оси является одной из операций симметрии. Операцией симметрии называется действие над объектом, которое приводит к его новой ориентации, неотличимой от исходной и совмещаемой с нею.

Каждой операции симметрии соответствует определенный элемент симметрии. Элементом симметрии называется геометрическое место точек, остающихся неподвижными при данной операции симметрии. Основными элементами симметрии являются собственные оси вращения, которые в системе обозначений Шенфлиса имеют символ Cn, где n - порядок оси, означающий, что поворот молекулы на угол 2p /n радиан приводит к структуре, неотличимой от первоначальной, несобственные оси вращения или зеркально-поворотные оси (s n), зеркальные плоскости симметрии (s), делящие молекулу пополам, так, что одна половина является зеркально-симметричной другой половине, центр инверсии (i) и тождественное преобразование (Е). В соответствии с этим операции симметрии делят на поворот оси вокруг оси симметрии Сn, поворот вокруг оси с последующим отражением в плоскости, перпендикулярной этой оси (Sn), отражение в плоскости симметрии s, инверсию в центре симметрии i и операцию идентичности Е. При операции идентичности с молекулой ничего не делают, но эта операция не бессмысленна, т.к. она позволяет включить в единую классификацию как симметричные, так и асимметричные объекты.

2.1 а. Собственная ось симметрии

Все молекулы имеют тривиальную ось С1, поскольку в любом случае вращение на 3600 возвращает молекулу в исходное состояние. Следовательно, операция С1 эквивалентна операции идентичности (С1 є Е). Дихлорметан имеет ось С2, аммиак - ось С3, метан - четыре оси С3, тетрахлорплатинат - ось С4.

2.1 б. Несобственная ось симметрии

Простейшая зеркально поворотная ось S1 эквивалентна перпендикулярной ей плоскости симметрии (S1 є s). Примером является молекула хлорфторметана. Зеркально-поворотные оси более высокого порядка (Sn) можно рассматривать как комбинацию вращения на угол 2p /n с последующим отражением в плоскости, перпендикулярной оси вращения. Так, аллен и изображенный ниже изомер 1,2,3,4-тетраметилциклобутана имеет зеркально-поворотную ось S4:

1,2-Дихлор-1,2-дифторэтан обладает осью S2, которая совпадает со связью С-С. Операция S2 эквивалентна инверсии в центр симметрии, который находится посредине связи С-С (S2 є i)

Поскольку у молекул может быть не один, а несколько элементов симметрии, их удобнее классифицировать по точечной группе симметрии. Набор все операций симметрии объекта образует его группу симметрии. Если при всех этих преобразованиях остается неподвижным центр тяжести фигуры, то группа симметрии называется точечной. Известны четыре типа точечных групп симметрии.

2.1 в. Типы точечных групп симметрии

К типу 1 относятся точечные группы С1, Сs, Ci, которые не имеют нетривиальных поворотных осей, поэтому их называют неаксиальными. К типу 2 относятся группы с единственной поворотной осью. В группе Cn других элементов симметрии нет, в группе Cnv имеется n вертикальных плоскостей s n, проходящих через ось Cn, а в группе Сnh одна горизонтальная плоскость s h, перпендикулярная оси Сn. Сюда же входит группа Sn, поскольку при наличии зеркально-поворотной оси порядка n обязательно имеется и собственная ось порядка n/2 (C2 у S4, C3 у S6 и т.д.). При нечетном n оси Sn могут быть представлены как комбинации других операций. Для низших порядков S1 є s и S2 є i. Точечные группы типа 3 имеют одну ось Сn и n осей второго порядка, перпендикулярных оси Сn. Такие группы называются диэдральными. Если нет плоскостей симметрии, группа обозначается как Dn, если имеется несколько плоскостей s v (вертикальных) - Dnd, а если еще и горизонтальная плоскость s h, то группа обозначается Dnh. К типу 4 относятся точечные группы, имеющие более чем одну ось порядка выше двух. Такие группы называются кубическими. К ним относятся точечные группы правильных тетраэдра (Td), октаэдра и куба (Oh), икосаэдра и додекаэдра (Ih). Максимальную симметрию имеет шар, который принадлежит предельной группе Kh, включающей все возможные операции симметрии.

2.2 Симметричное определение хиральности

Хиральна любая истинно асимметрическая молекула, относящаяся к группе С1, не имеющая никаких элементов симметрии, кроме идентичности (и оси С1, т.к. С1 Е). Очевидно, также, что молекулы, имеющие плоскость симметрии (s) или центр симметрии (i) ахиральны, поскольку они состоят из двух одинаковых "половинок" и в зеркальном отображении левая и правая половинки преобразуются друг в друга или без поворотов (при наличии плоскости), или с поворотом на 1800 (при наличии центра инверсии). Молекулы, имеющие зеркально-поворотные оси (Sn) также совмещаются со своим зеркальным отображением, и поэтому ахиральны. Следовательно, хиральны только молекулы, относящиеся к аксиальным точечным группам Сn и Dn.

Таким образом, можно сформулировать симметрийный критерий хиральности: любая молекула, которая не имеет несобственной оси вращения Sn хиральна.

Впервые доказательство справедливости данного определения хиральных молекул получено при исследовании изомерных четвертичных аммонийных солей со спирановым атомом азота IV, V, VII и IX. Изомеры IV и V асимметричны (группа C1), изомер VII диссимметричен (группа D2). Поэтому эти три изомера должны быть хиральными. И действительно, они были получены в оптически активной форме. Однако изомер VIII относится к группе S4, т.е. ахирален, и получить его в оптически активной форме нельзя.

2.3 Типы хиральности

Адамантаны, у третичных атомов углерода которых имеется четыре разных заместителя, хиральны и оптически активны. При сравнении формул симметрия обоих соединений очень похожа. Остов адамантана можно представить как тетраэдр с "изломанными ребрами", он имеет симметрию Td которая переходит в C1, когда все четыре заместителя у третичных атомов углерода разные. У производного адамантана нет асимметрического атома углерода, как в a-бромпропионовой кислоте, но есть центр, находящийся внутри молекулы (центр тяжести незамещенного адамантана).

Асимметрический центр - это частный случай более общего понятия хиральный центр. Хиральный центр может иметь не только асимметрические молекулы, но и молекулы симметрии Cn или Dn. Хиральный центр является лишь одним из возможных элементов хиральности. Однако кроме центрального существуют еще и аксиальный, планарный и спиральный типы хиральности.

Аксиальной хиральностью обладают молекулы, имеющие хиральную ось. Хиральную ось легко получить, мысленно "растягивая" центр хиральности:

Хиральную ось имеют такие классы молекул, как аллены и дифенилы. В алленах центральный атом углерода sp-типа имеет две взаимно-перпендикулярные p-орбитали, каждая из которых перекрывается с p-орбиталью соседнего атома углерода, в результате чего остающиеся связи концевых атомов углерода располагаются в перпендикулярных плоскостях. Сам аллен хирален, так как имеет зеркально-поворотную ось S4, но несимметрично замещенные аллены типа abС=С=Сab хиральны.

Аллены хиральны только в том случае, если оба концевых атома углерода замещены несимметрично:

При любом нечетном числе кумулированных двойных связей четыре концевые группы располагаются уже не в разных, а в одной плоскости, например, для 1,2,3-бутатриена:

Такие молекулы ахиральны, но для них наблюдается цис-транс-изомерия.

Так, соединение было разделено на оптические изомеры.

Если одну или обе двойные связи симметрично замещенного аллена заменить на циклическую систему, то полученные молекулы будут тоже обладать аксиальной хиральностью, например:

В бифенилах, содержащих четыре объемистые группы в орто-положениях, свободное вращение вокруг центральной связи затруднено из-за стерических препятствий, и поэтому два бензольных кольца не лежат в одной плоскости. По аналогии с алленами, если одно или оба бензольных кольца замещены симметрично, молекула ахиральна; хиральны же молекулы только с двумя несимметрично замещенными кольцами, например:

Изомеры, которые можно разделить только благодаря тому, что вращение вокруг простой связи затруднено, называются атропоизомерами.

Иногда для предотвращения свободного вращения в бифенилах достаточно трех и даже двух объемистых заместителей в орто-положениях. Так, удалось разделить на энантиомеры бифенил-2,2-дисульфокислоту (XV). В соединении XVI свободное вращение полностью не заторможено, и, хотя его можно получить в оптически активной форме, при растворении в этаноле оно быстро рацемизуется (наполовину за 9 мин. при 250).

Для некоторых хиральных молекул определяющим структурным элементом является не центр, не ось, а плоскость. Простейшую модель планарной хиральности легко сконструировать из любой плоской фигуры, не имеющей осей симметрии, лежащих в этой плоскости, и отдельной точки вне плоскости. Наиболее изучены планарно-хиральные производные ферроцена (XVII). Другими примерами являются ареновые комплексы хромтрикарбонила (XVIII), а также соединения XIX и XX.

Спиральная хиральность обусловлена спиральной формой молекулы. Спираль может быть закручена влево или вправо, давая энантиомерные спирали. Например, в гексагелицене одна часть молекулы из-за пространственных препятствий вынуждена располагаться над другой.

3. Номенклатура энантиомеров

Определение конфигурации-это экспериментальная работа, выполняемая химическими и физическими методами с целью установить, какая из двух зеркальных пространственных моделей отвечает правовращающему энантиомеру, а какая - левовращающему. При полной определенности самой конфигурации (пространственной модели) вопрос об ее обозначении может решаться по-разному.

3.1 По конфигурации: R - и S

Система R/S - наиболее важная номенклатурная система для характеристики энантиомеров. По этой системе, центр хиральности называется R или S в соответствии с системой, по которой каждое замещающее звено наделяется приоритетом в соответствии с правилами Кана-Инголда-Прелога, основываясь на атомном номере. Если центр ориентирован так, что низший из возможных четырёх направлен от наблюдателя, наблюдатель увидит два возможных варианта: если приоритет оставшихся трёх замещающих групп уменьшается по часовой стрелке, название даётся R (Rectus), если уменьшается против часовой стрелки, то S (Sinister). Эта система маркирует каждый хиральный центр молекулы (и также имеет распространение на хиральные молекулы, не затрагивая хиральных центров). Несмотря на это, она более обобщённа, чем система D/L, и может, например, наименовать изомер, в котором (R,R) - группа расположена напротив (R,S) - диастереомер. У системы R/S нет отношения к (+/-) - системе. R-изомер может быть правоповоротным, так и левоповоротным, в зависимости от фактических замещающих групп. У системы R/S нет и отношения к D/L системе. По этой причине система D/L остаётся в повседневном использовании

3.2 По оптической активности: +/-

Энантиомер именуется по направлению света, в котором вращает плоскость поляризованного света. Если вращение происходит по часовой стрелке (по отношению к наблюдателю, к которому направляется свет), то в названии энантиомера отмечается (+). Его зеркальный образ именуется (-). (+) - и (-) - изомеры также определяются как D - и L соответственно (от англ. Dextrorotatory - правоповоротный и Levorotatory - левоповоротный).

3.3 По конфигурации: D - и L-

Оптический изомер может быть назван по пространственной конфигурации его атомов. Система D/L делает это, опираясь на молекулу глицераля. Сам по себе глицераль хирален, и два его изомера именуются D и L. С глицералем можно провести определённые химические манипуляции без изменения конфигурации, и его историческое использование с этой целью (в совокупности с удобством его использования как одной из наименьших широко используемых хиральных молекул) вылилось в его использование в номенклатуре. В этой системе составные части называются по аналогии с глицералем, который, в общем, производит недвусмысленные обозначения, да к тому же и легче всего увидеть в маленьких биомолекулах, похожих на глицераль. Маркировка D/L не относится к (+) / (-) никаким образом; она не указывает, какой энантиомер правоповоротный, какой - левоповоротный. Однако она сообщает, что стереохимия соединений имеет отношение к тому, что из право - или левоповоротного энантиомеров глицераля правоповоротный будет D-изомером. Общая закономерность для определения D/L изомерии аминокислот называется правилом “CORN”. Группы COOH, R, NH2 и H (где R - отличная от других углеродная цепь) выстраиваются вокруг атома углерода хирального центра. Когда смотреть так, чтобы атом водорода был направлен вдаль от наблюдателя, если эти группы расположены по часовой стрелке вокруг атома углерода, то это D-форма. Если против часовой, то L-форма.

4. Методы определения конфигурации

4.1 Определение абсолютной конфигурации

Для определения абсолютной конфигурации применяются два метода: экспериментальное исследование аномальной дифракции рентгеновских лучей на ядрах тяжелых атомов и теоретический расчет величины оптического вращения.

4.1 а. Дифракция рентгеновских лучей

Благодаря тому, что рентгеновские лучи при прохождении через кристаллы дают дифракционную картину, метод рентгено-структурного анализа (РСА) широко используется для установления строения химических соединений. Когда дифракция происходит на электронных оболочках легких атомов (C,H,N,O,F,Cl), характер наблюдаемой интерференциальной картины определяется только наличием самих ядер, но не их природой. Это объясняется тем, что легкие атомы лишь рассеивают рентгеновские лучи, но не поглощают их, и поэтому в ходе эксперимента не происходит изменения фазы рассеянного излучения.

Тяжелые атомы не только рассеивают, но и поглощают рентгеновские лучи в определенных областях кривой поглощения. Если длина волны падающего излучения совпадает с начальным слабо поглощающим участком этой кривой, то наблюдается не только обычная дифракция, но также и некоторый сдвиг по фазе рассеянного излучения, обусловленный тем, что часть его поглощается. Это явление называется аномальным рассеянием рентгеновских лучей. При наличии лишь легких атомов РСА позволяет определить межъядерные расстояния между связанными и несвязанными атомами и на их основе сделать выводы о строении данной молекулы и о наличии в ней хиральных элементов. В этом случае различить энантиомеры нельзя. Однако при наличии тяжелых атомов характер аномального рассеяния зависит не только от расстояния между атомами, но и от относительного расположения в пространстве. Явление аномальной дифракции рентгеновских лучей позволяет непосредственно определить абсолютные конфигурации молекул, содержащих тяжелые атомы, а также молекул, в которые тяжелые атомы могут быть введены в качестве специальных меток. Впервые такой анализ был проведен Бейфутом в 1951 г. В настоящее время с помощью РСА определена абсолютная конфигурация нескольких сотен соединений.

4.1 б. Теоретический расчет оптического вращения

В 1952 г был опубликован квантово-химический расчет оптического вращения знантиомеров на примере транс-2,3-эпоксибутана (XXX). Конфигурация этого эпоксида может быть скоррелирована с конфигурацией винной кислоты и далее с глицериновым альдегидом. При этом снова обнаружилось, что ранее произвольно выбранная стереоформула D-глицеринового альдегида совершенно правильна и нет необходимости изменять принятое в литературе в течение многих лет изображение этой конфигурации.

4.2 Определение относительной конфигурации

При определении относительной конфигурации соединение с неизвестной конфигурацией соотносят с другим соединением, конфигурация которого уже известна.

4.2 а. Химическая корреляция

Первая группа методов связана с превращением соединения с неизвестной конфигурацией в соединение с известной конфигурацией или образованием неизвестной конфигурации из известной без нарушения хирального элемента, например, хирального центра. Поскольку в ходе превращения хиральный центр не затрагивается, очевидно, что продукт должен иметь ту же конфигурацию, что и исходное соединение. При этом вовсе не обязательно, что если неизвестное соединение относится к (R) - ряду, то и известное будет иметь (R) - конфигурацию. Например, при восстановлении (R) - 1-бром-2-бутанола в 2-бутанол, не затрагивающем хиральный центр, продуктом будет (S) - изомер несмотря на то, что его конфигурация не изменилась. Это связано с тем, что группа СH3CH2 определению младше группы BrCH2, но старше группы СН3.

Одним из многих примеров химической корреляции является установление относительной конфигурации D-галактозы (XXXI) путем ее окисления. Поскольку этот процесс приводит к образованию оптически неактивной дикарбоновой кислоты, относительная конфигурация ее четырех хиральных центров может соответствовать или структуре XXXII, или структуре XXXIII. Но дикарбоновая кислота (XXXIV), полученная из галактозы путем окислительного отщепления альдегидного атома углерода, оптически активна. Следовательно, D-галактоза имеет относительную конфигурациию, показанную формулой XXXI.

Подобным путем можно выяснить лишь относительную конфигурацию исследуемых молекул, но не их абсолютные конфигурации.

Вторая группа методов химической корреляции основана на превращении при хиральном центре, механизм которого точно известен. Так, реакция SN2 происходит с обращением (инверсией) конфигурации реакционного центра. С помощью последовательности таких реакций конфигурация (+) - молочной кислоты была скоррелирована с конфигурацией (S) - (+) - аланина.

К третьей группе относятся биохимические методы. В ряду одного класса соединений, например, аминокислот, определенный фермент атакует молекулы только одной конфигурации. Если какой-то фермент, скажем, атакует только (S) - аминокислоты, не трогая (R) - форму, и это экспериментально установлено на ряде примеров, то еще одна аминокислота, подвергающаяся действию того же фермента, должна принадлежать к (S) - ряду.

4.2 б. Установление относительной конфигурации с помощью физических методов

Наиболее широко используют хироптические методы (ДОВ и КД) и спектроскопию ЯМР. Использования хироптических методов для установления конфигурации заключается в сравнении параметров ДОВ и КД в сериях похожих соединений. Эксперимент показал, что знаки эффекта Коттона для этих двух соединений противоположны, но форма и интенсивность спектральных кривых одинакова. Другими словами, кривые ДОВ и КД зеркально-симметричны, и следовательно соединения XXXV и XXXVI можно рассматривать как квазиэнантиомеры в хироптическом (но не в истинно структурном) смысле термина. В приведенном примере Уф - поглощение обусловлено карбонильным хромофором, который ахирален. Тем не менее, наличие хирального окружения оказывает хиральное возмущающее действие на электронный переход группы С=О, позволяя установить относительные конфигурации.

При определении относительных конфигураций методом ЯМР обычно используют химические сдвиги и константы спин-спинового взаимодействия. Так, например, в 1,3-дитиане (XVII) экваториальные атомы водорода в положении 2 имеют значительно более высокий химический сдвиг, чем в аксиальном положении, на основании чего легко определить конфигурацию 2-замещенных дитианов.

Константы спин-спинового взаимодействия (J) у вицинальных протонов в этановом фрагменте коррелируют с величинами соответствующих двугранных углов j:

На этом основании можно определить конфигурацию, но только в рядах структурно-родственных соединений, так как величина J зависит также и от природы заместителей.

Еще один способ основан на явлении изменения химических сдвигов под влиянием лантанидных комплексов, которые называются сдвигающими реагентами. Известно, что шестикоординационные хелатные комплексы некоторых парамагнитных лантанидов (например, b - дикетонат европия XXXVIII) могут увеличивать координационное число до 8 путем образования неустойчивых ассоциатов с полярными электронно-донорными группыми типа C=O, OH, NH2 и др. Это приводит к сильному изменению величины химсдвигов ядер близко расположенных к координирующему атому. Таким путем можно, например, отличить экзо - и эндо-изомеры борнеола (XXXIX).

Конфигурацию гомологов можно определить просто по знаку оптического вращения. В гомологических рядах вращение обычно меняется постепенно и в одном направлении, поэтому, если известна конфигурация достаточного числа членов данного ряда, конфигурацию остальных можно установить экстраполяцией.

5. Методы разделения энантиомеров

Операции разделения рацемических смесей на составляющие их оптически активные компоненты называются расщеплением. Отношение экспериментально наблюдаемого удельного вращения вещества, полученного путем расщепления, к удельному (абсолютному вращению чистого энантиомера называется оптической чистотой (Р). Тождественными оптической чистоте являются понятия энантиомерной чистоты или энантиомерного избытка (э. и.).

где Е - мольная доля энантиомера, находящегося в избытке, Е* - мольная доля другого энантиомера.

Любой процесс получения оптически активного вещества из оптически неактивного предшественника, в том числе и расщепление рацемических смесей, называется оптической активацией. Общим принципом всех процессов оптической активации является создание в той или иной форме диастереомерных взаимодействий.

5.1 Расщепление через диастереомеры

Этот метод до настоящего времени использовался наиболее часто. Если рацемическое соединение содержит карбоксильную группу, то можно получить соль с оптически активным основанием. Если же рацемат содержит аминогруппу, то можно получить соль с оптически активной кислотой. Допустим, что оптически активный реагент (в данном случае основание или кислота) имеет (S) - конфигурацию. Тогда образующиеся соли будут смесью (R) - и (S) - диастереомеров, и в отличие от энантиомеров их свойства будут уже различаться.

На практике чаще всего применяют кристаллизацию, используют различие в растворимости двух диастереомеров. В настоящее время все чаще применяют хроматографические методы. На последней стадии из соли выделяют знантиомер.

Для разделения рацемических кислотных соединений применяют природные оптически активные основания, которые называются алкалоидами, например, бруцин, эфедрин, стрихнин, хинин, цинхонин, морфин и др. После проведения разделения их регенерируют и используют снова. Однако эти вещества сильно токсичны и поэтому их стремятся заменить синтетическими оптически активными аминами, например, a - фенилэтиламином. Например, таким путем расщепляется рацемическая 3-метил-2-фенилбутановая кислота.

Для разделения рацемических основных соединений применяют оптически активные кислоты: винную, миндальную, аспарагиновую (аминоянтарную), глутаминовую (a - аминоглутаровую), камфорсульфоновую и др.

Если молекула не содержит кислотной или основной группировки, то ее можно сначала ввести, а затем после разделения на энантиомеры снять, например,

Диастереомеры могут образовываться не только в результате взаимодействий кислот и оснований Бренстеда, но также и в реакциях, в которых взаимодействуют кислоты и основания Льюиса. Так, при расщеплении ароматических соединений, в состав которых не входит ни кислотные, ни основные группировки (например, хиральных нафтиловых эфиров), может быть использована их способность образовывать p - комплексы с нитрофлуореном. Для этой цели используют реагент (XLI), в котором элекктроноакцепторные тетранитрофлуореноноксимная группа придает ей способность к комплексообразованию с электронодонорными ароматическими кольцами, а фрагмент энантиомерной молочной кислоты обеспечивает реагенту в целом оптическую активность. Другим примером является расщепление транс-циклооктена путем образования комплекса с солью двухвалентной платины (кислота Льюиса), вторым лигандом у которой является молекула (R) - a - фенилэтиламина (XLII).

5.2 Хроматографическое расщепление

Если рацемичеcкую смесь хроматографировать на колонке, заполненной хиральными веществами, энантиомеры должны проходить с разными скоростями и, следовательно, их можно разделить. Таким путем, например, миндальную кислоту разделяют на колонке, заполненной крахмалом. Можно использовать бумажную, колоночную, газовую и жидкостную хроматографию.

5.3 Механическое расщепление

В случае рацемической натрийаммониевой соли винной кислоты энантиомеры при температуре ниже 270 (температура очень важна) кристаллизуются раздельно: в одном кристалле собираются (+) - изомеры, а в другом (-) - изомеры. Такие кристаллы отличаются друг от друга зеркальностью формы, и их можно разделить с помощью пинцета и микроскопа. Именно таким путем Л. Пастер в 1848 г. впервые доказал, что рацемическая винная кислота в действительности представляет собой смесь (+) - и (-) - изомеров.

Однако такого рода кристаллизация свойственна лишь немногим веществам. Описано, например, расщепление гептагелицена (смесь спирально сочлененных бензольных колец; аналог гексагелицена -). Один из энантиомеров этого соединения, имеющий необычно высокое оптическое вращение ([a] D20= +62000) спонтанно выкристаллизовывается из бензола.

При аналогичном расщеплении 5-метил-3,3-диэтил-2,4-пиперидиндиона (XLIII) было взято 20 кг рацемата и после 400 перекристаллизаций получено всего 3 г оптически чистого правовращающего изомера. Одним из немногих соединений, которые можно разделить пинцетом по методу Пастера является 1,1,-динафтил (XLIV). При нагревании рацемата при 76-1500 происходит фазовое изменение с образованием лево - и правовращающих кристаллов.

5.4 Ферментативное расщепление

Довольно часто для получения оптически активных веществ из рацематов используют ферменты, которые обладают высокой стереоспецифичностью действия. Наибольшее значение метод приобрел для стереоспецифического гидролиза N-ациламинокислот. Под действием фермента ацилазы на рацемическую N - ацетиламинокислоту L-изомер гидролизуется в 1000 раз быстрее D-изомера, и после окончания ферментативной реакции легко можно разделить L-аминокислоту и D-ацетиламинокислоту.

5.5 Установление оптической чистоты

В большинстве случаев при расщеплении рацематов получаются энантиомеры, не имеющие 100% -ной оптической чистоты. Для установления содержания в них второго энантиомера применяют по сути дела те же методы, что и для расщепления, с той лишь разницей, что в данном случае образующиеся диастереомерные комплексы не разделяют, а тем или иным способом определяют их концентрацию. Относительные концентрации диастереомеров можно определить любым способом, например, с помощью ГЖХ или ЯМР-спектроскопии.

Заключение

Опти́ческая изомери́я - разновидность пространственной изомерии, являющаяся прямым следствием хиральности молекул, проявляется способностью некоторых веществ поворачивать плоскость поляризованного луча в противоположные стороны. Оптическая изомерия свойственна молекулам органических веществ, не имеющим плоскости симметрии, которые относятся друг к другу как предмет к своему зеркальному отражению.

Два стереоизомера, относящиеся друг к другу как предмет к своему зеркальному отражению, не совместимому с оригиналом, называются энантиомерами, и каждая из этих структур является хиральной.

Существование двух энантиомеров (хиральность) обусловлено атомом, имеющим различные заместители. Такой асимметрический атом называют стереоцентром или стереогенным центром. Применяются также названия хиральный или асимметрический центр.

Смесь равных количеств обоих энантиомеров называется рацемической формой. Некоторые характеристики энантиомеров, например растворимость и реакционная способность, одинаковы только при ахиральном окружении, если же энантиомер окружен хиральными молекулами, реакционная способность двух энантиомеров будет различаться.

Энантиомеры различаются также при прохождении луча плоско поляризованного света через их растворы. Для каждой пары энантиомеров луч отклоняется на один и тот же угол, но в разные стороны (направо или налево), что обозначается знаками "+" и "-" или d и l. По этой причине стереоизомеры такого типа иногда называют оптическими изомерами.

В обычных химических реакциях, приводящих к образованию энантиомеров, получаются их равные количества (рацемическая форма). Рацемическая смесь не обладает оптической активностью. Если же химическая реакция проводится в хиральной среде или в присутствии хирального катализатора, то получают продукты с преобладанием (иногда полностью) одного энантиомера.

Наличие оптической изомерии может быть обусловлено также наличием стереогенной оси или плоскости.

Если молекула содержит более одного стереогенного центра, то число оптических изомеров определяют по формуле 2n, где n - число стереогенных центров. Стереоизомеры, не являющиеся энантиомерами, называются диастереомерами.

Операции разделения рацемических смесей на составляющие их оптически активные компоненты называются расщеплением. Отношение экспериментально наблюдаемого удельного вращения вещества, полученного путем расщепления, к удельному (абсолютному вращению чистого энантиомера называется оптической чистотой (Р). Тождественными оптической чистоте являются понятия энантиомерной чистоты или энантиомерного избытка. Существует несколько способов разделения: расщепление через диастереомеры, хроматографическое расщепление, механическое расщепление, ферментативное расщепление и установление оптической чистоты.

Литература

1. Аблесимов Н.Е. Синопсис химии: Справочно-учебное пособие по общей химии. - Хабаровск: Изд-во ДВГУПС, 2005.

2. Бакстон Ш., Робертс С. введение в стереохимию органических соединений. - М.: Мир, 2005.

3. Вайлен С. Дойл М. Илиел Э. Бином. Лаборатория знаний - 2007.

4. Ельницкий А.П. Номенклатура органических соединений. Мн.: Сэр-Вит, 2003

5. Илиэл Э. Основы стереохимии. М.: Мир, 1971.

6. Ким А. М Органическая химия: Учеб. пособие. - 3-е изд., испр. и доп. - Новосибирск: Сиб. унив. изд-во, 2002

7. Ногради М. Стереохимия. - М.: Мир, 1984.

8. Папулов Ю.Г. Статистическая стереохимия и конформационный анализ. Калинин: КГУ, 1978.

9. Потапов В.М., Стереохимия, М., 2009.

10. Основы стереохимии (пер. с англ. Демьянович В. М.) Изд.2-е

11. Реутов О.А., А.Л. Курц, К.П. Бутин "Органическая химия. Углубленный курс " 1999.

12. Реутов О.А., А.Л. Курц, К.П. Бутин "Органическая химия" - М., 2007 - Ч.2

13. Соколов В.И. Введение в теоретическую стереохимию. - М.: Наука, 1982.

14. Травень В.Ф., Баберкина Е.П., Сафронова О.Б., Шкилькова В.Н. - Стереохимия. Учебное пособие - Москва: РХТУ, 1999.

15. Черних В. П, та ін. Органічна хімія / В.П. Черних, Б, С. Зименковський, І.С. Гриценко: Підручник для фарм. вузів і факультетів. У 3 кн.: Кн.1. Основи будови органічних сполук. - Вид-во "Основа" при Харк. ун-ті. 2000 р.

Изомеры - вещества с одинаковым строением молекулы, но разными химическим строением и свойствами.

Виды изомерии

I . Структурная - заключается в различной последовательности соединения атомов в цепи молекулы:

1) Изомерия цепи

Следует отметить, что атомы углерода в разветвленной цепи различаются типом соединения с другими углеродными атомами. Так, атом углерода, связанный только с одном другим углеродным атомом, называется первичным , с двумя другими атомами углерода - вторичным , с тремя - третичным , с четырьмя - четвертичным .

2) Изомерия положения


3) Изомерия межклассовая

4) Таутомерия

Таутомери́я (от греч. ταύτίς — тот же самый и μέρος — мера) — явление обратимой изомерии, при которой два или более изомера легко переходят друг в друга. При этом устанавливается таутомерное равновесие, и вещество одновременно содержит молекулы всех изомеров в определённом соотношении. Чаще всего при таутомеризации происходит перемещение атомов водорода от одного атома в молекуле к другому и обратно в одном и том же соединении.

II. Пространственная (стерео) - обусловлена различным положением атомов или групп относительно двойной связи или цикла, исключающих свободное вращение соединённых атомов углерода

1. Геометрическая (цис -, транс - изомерия)


Если атом углерода в молекуле связан с четырьмя различными атомами или атомными группами, например:

то возможно существование двух соединений с одинаковой структурной формулой, но отличающихся пространственным строением. Молекулы таких соединений относятся друг к другу как предмет и его зеркальное изображение и являются пространственными изомерами.

Изомерия этого вида называется оптической, изомеры - оптическими изомерами или оптическими антиподами:

Молекулы оптических изомеров несовместимы в пространстве (как левая и правая руки), в них отсутствует плоскость симметрии.
Таким образом,

  • оптическими изомерами называются пространственные изомеры, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение.

Оптические изомеры аминокислоты

3. Конформационная изомерия

Следует отметить, что атомы и группы атомов, связанные друг с другом σ -связью, постоянно вращаются относительно оси связи, занимая различное положение в пространстве друг относительно друга.

Молекулы, имеющие одинаковое строение и различающиеся пространственным расположением атомов в результате вращения вокруг С-С связей, называются конформерами.

Для изображения конформационных изомеров удобно пользоваться формулами - проекциями Ньюмена:

Явление конформационной изомерии можно рассмотреть и на примере циклоалканов. Так, для циклогексана характерны конформеры:

Рассмотренные нами ранее виды формул, описывающих органические вещества, показывают, что одной молекулярной может соответствовать несколько разных структурных формул.

Например, молекулярной формуле C2 H6 O соответствуют два вещества с разными структурными формулами - этиловый спирт и диметиловый эфир. Рис. 1.

Этиловый спирт - жидкость, которая реагирует с металлическим натрием с выделением водорода, кипит при +78,50С. При тех же условиях диметиловый эфир - газ, не реагирующий с натрием, кипит при -230С.

Эти вещества отличаются своим строением - разным веществам соответствует одинаковая молекулярная формула.

Рис. 1. Межклассовая изомерия

Явление существования веществ, имеющих одинаковый состав, но разное строение и поэтому разные свойства называют изомерией (от греческих слов «изос» - «равный» и «мерос» - «часть», «доля»).

Типы изомерии

Существуют разные типы изомерии.

Структурная изомерия связана с разным порядком соединения атомов в молекуле.

Этанол и диметиловый эфир - структурные изомеры. Поскольку они относятся к разным классам органических соединений, такой вид структурной изомерии называется еще и межклассовой . Рис. 1.

Структурные изомеры могут быть и внутри одного класса соединений, например формуле C5H12 соответствуют три разных углеводорода. Это изомерия углеродного скелета . Рис. 2.

Рис. 2 Примеры веществ - структурных изомеров

Существуют структурные изомеры с одинаковым углеродным скелетом, которые отличаются положением кратных связей (двойных и тройных) или атомов, замещающих водород. Этот вид структурной изомерии называется изомерией положения .

Рис. 3. Структурная изомерия положения

В молекулах, содержащих только одинарные связи, при комнатной температуре возможно почти свободное вращение фрагментов молекулы вокруг связей, и, например, все изображения формул 1,2-дихлорэтана равноценны. Рис. 4

Рис. 4. Положение атомов хлора вокруг одинарной связи

Если же вращение затруднено, например, в циклической молекуле или при двойной связи, то возникает геометрическая или цис-транс изомерия. В цис-изомерах заместители находятся по одну сторону плоскости цикла или двойной связи, в транс-изомерах - по разные стороны.

Цис-транс изомеры существуют в том случае, когда с атомом углерода связаны два разных заместителя. Рис. 5.

Рис. 5. Цис- и транс- изомеры

Еще один тип изомерии возникает в связи с тем, что атом углерода с четырьмя одинарными связями образует со своими заместителями пространственную структуру - тетраэдр. Если в молекуле есть хотя бы один углеродный атом, связанный с четырьмя разными заместителями, возникает оптическая изомерия . Такие молекулы не совпадают со своим зеркальным изображением. Это свойство называется хиральностью - от греческого с hier - «рука». Рис. 6. Оптическая изомерия характерна для многих молекул, входящих в состав живых организмов.

Рис. 6. Примеры оптических изомеров

Оптическая изомерия называется также энантиомерией (от греческого enantios - «противоположный» и meros - «часть»), а оптические изомеры - энантиомерами . Энантиомеры оптически активны, они вращают плоскость поляризации света на один и тот же угол, но в противоположные стороны: d- , или (+)-изомер, - вправо, l- , или (-)-изомер, - влево. Смесь равных количеств энантиомеров, называемая рацематом , оптически недеятельна и обозначается символом d,l- или (±).

ИСТОЧНИКИ

источник видео - http://www.youtube.com/watch?v=mGS8BUEvkpY

http://www.youtube.com/watch?t=7&v=XIikCzDD1YE

http://interneturok.ru/ru/school/chemistry/10-klass - конспект

источник презентации - http://ppt4web.ru/khimija/tipy-izomerii.html

http://www.youtube.com/watch?t=2&v=ii30Pctj6Xs

http://www.youtube.com/watch?t=1&v=v1voBxeVmao

http://www.youtube.com/watch?t=2&v=a55MfdjCa5Q

http://www.youtube.com/watch?t=1&v=FtMA1IJtXCE

источник презентации - http://mirhimii.ru/10class/174-izomeriya.html

Содержание статьи

ОПТИЧЕСКАЯ ИЗОМЕРИЯ. «Когда молекула смотрится в зеркало» – такое необычное название было у статьи, опубликованной в июньском номере за 1996 год американского журнала, посвященного химическому образованию (Journal of Chemical Education). А на первой странице обложки этого номера был тоже необычный рисунок. На боку добродушно виляющего хвостом пса была изображена структурная формула пеницилламина. Пес смотрел в зеркало, а оттуда на него глядел страшный зверь с оскаленной клыкастой пастью и вставшей дыбом шерстью. На боку зверя была изображена та же самая структурная формула в виде зеркального отображением первой. Почему же фактически одно и то же вещество имеет столь разные обличья? Объясняется это особым свойством некоторых химических соединений, которое тесно связано с их оптической активностью.

Поляризация света и оптическая активность.

В начале 19 в. английский физик, астроном и врач Томас Юнг показал, что свет можно рассматривать как волну. Французский физик Огюстен Френель установил, что световые волны – поперечные: колебания в них происходят перпендикулярно направлению движения (как у волн на поверхности воды: волна бежит вперед, а поплавок на воде колеблется вверх – вниз). Уже в 20 в. было установлено, что свет – это электромагнитная волна, наподобие радиоволны, только длина волны у света намного меньше. Термин «электромагнитная» означает, что у света имеются электрические и магнитные поля, которые совершают периодические колебания, как волны на поверхности моря. Нас сейчас интересуют колебания только электрического поля. Оказывается, эти колебания происходят не как попало, а только перпендикулярно направлению светового луча. В обычном свете (его излучают, например, солнце, лампы накаливания) колебания происходят случайно, во всех направлениях. Но, пройдя через некоторые кристаллы, например, турмалина или исландского шпата (прозрачная разновидность кальцита СаСО 3), свет приобретает особые свойства: кристалл как бы «срезает» все колебания электрического поля, кроме одного, расположенного в определенной плоскости. Образно говоря, луч такого света подобен шерстяной нитке, которую продернули через узкую щель между двумя острыми лезвиями бритвы.

Французский физик Этьен Луи Малюс полагал, что свет состоит из частиц с двумя полюсами – «северным» и «южным», и в свете, прошедшем через исландский шпат, все полюсы повернуты в одну сторону. Поэтому он назвал такой свет поляризованным. Было обнаружено, что свет частично поляризуется, отражаясь под некоторыми углами от блестящих поверхностей диэлектриков, например, от стекла, или преломляясь в них. Теория Малюса не подтвердилась, однако название осталось. Глаз человека не может отличить обычный свет от поляризованного, однако это легко сделать с помощью простейших оптических приборов – поляриметров; ими пользуются, например, фотографы: поляризационные фильтры помогают избавиться от бликов на фотографии, которые возникают при отражении света от поверхности воды.

Выяснилось, что при прохождении поляризованного света через некоторые вещества происходит интересное явление: плоскость, в которой расположены «стрелки» колеблющегося электрического поля, постепенно поворачивается вокруг оси, вдоль которой идет луч. Впервые это явление обнаружил в 1811 французский физик Франсуа Доминик Араго у кристаллов кварца. Природные кристаллы кварца имеют неправильное, асимметричное строение, причем они бывают двух типов, которые отличаются по своей форме, как предмет от своего зеркального изображения. Эти кристаллы вращают плоскость поляризации света в противоположных направлениях; их назвали право- и левовращающими.

В 1815 другой французский физик Жан Батист Био и немецкий физик Томас Зеебек установили, что некоторые органические вещества (например, сахар или скипидар) также обладают этим свойством, причем не только в кристаллическом, но и в жидком, растворенном и даже газообразном состоянии. Так было доказано, что оптическая активность может быть связана не только с асимметрией кристаллов, но и с каким-то неизвестным свойством самих молекул. Оказалось, что, как и в случае кристаллов, некоторые химические соединения могут существовать в виде как право-, так и левовращающих разновидностей, причем самый тщательный химический анализ не обнаруживает между ними никаких различий! Фактически это был новый тип изомерии, которую назвали оптической изомерией. Оказалось, что кроме право- и левовращающих, есть и третий тип изомеров – оптически неактивные. Это обнаружил в 1830 знаменитый немецкий химик Йёнс Якоб Берцелиус на примере виноградной (дигидроксиянтарной) кислоты НООС–СН(ОН)–СН(ОН)–СООН: эта кислота оптически неактивна, а винная кислота точно такого же состава обладает в растворе правым вращением. Позднее была открыта и не встречающаяся в природе «левая» винная кислота – антипод правовращающей.

Различить оптические изомеры можно с помощью поляриметра – прибора, измеряющего угол поворота плоскости поляризации. Для растворов этот угол линейно зависит от толщины слоя и концентрации оптически активного вещества (закон Био). Для разных веществ оптическая активность может изменяться в очень широких пределах. Так, в случае водных растворов разных аминокислот при 25° С удельная активность (она обозначается как D и измеряется для света с длиной волны 589 нм при концентрации 1 г/мл и толщине слоя 10 см) равна –232° для цистина, –86,2° для пролина, –11,0° для лейцина, +1,8° для аланина, +13,5° для лизина и +33,2° для аспарагина. Современные поляриметры позволяют измерять оптическое вращение с очень высокой точностью (до 0,001°). Подобные измерения позволяют быстро и точно определить концентрацию оптически активных веществ, например, содержание сахара в растворах на всех стадиях его производства – начиная от сырых продуктов и кончая концентрированным раствором и патокой.

Открытие Пастера.

Оптическую активность кристаллов физики связывали с их асимметричностью; полностью симметричные кристаллы, например, кубические кристаллы поваренной соли оптически неактивны. Причина же оптической активности молекул долгое время оставалась совершенно загадочной. Первое открытие, проливавшее свет на это явление, сделал в 1848 никому тогда не известный Луи Пастер. Еще в студенческие годы Пастер интересовался химией и кристаллографией, работая под руководством физика Ж.Б.Био и видного французского химика Жана Батиста Дюма. После окончания Высшей нормальной школы в Париже молодой (ему было всего 26 лет) Пастер работал лаборантом у Антуана Балара. Балар был уже известным химиком, который за 22 года до этого прославился открытием нового элемента – брома. Своему ассистенту он дал тему по кристаллографии, не предполагая, что это приведет к выдающемуся открытию.

В ходе исследования Пастер получил кислую натриевую соль виноградной кислоты C 4 H 5 O 6 Na, насытил раствор аммиаком и медленным выпариванием воды получил красивые призматические кристаллы натриево-аммониевой соли C 4 H 3 O 6 NaNH 4 . Кристаллы эти оказались асимметричными, одни из них были как бы зеркальным отражением других: у половины кристаллов одна характерная грань находилась справа, а у других – слева. Вооружившись увеличительным стеклом и пинцетом, Пастер разделил кристаллы на две кучки. Их растворы, как и следовало ожидать, обладали противоположным оптическим вращением. Пастер на этом не остановился. Из каждого раствора он выделил исходную кислоту (которая была неактивной). Каково же было его удивление, когда оказалось, что один раствор – это известная правовращающая винная кислота, а другой – такая же кислота, но вращающая влево!

Воспоминания очевидцев свидетельствуют о невероятном нервном возбуждении молодого ученого, охватившем его в эту минуту; поняв, что ему удалось сделать, Пастер выбежал из лаборатории и, встретив лаборанта физического кабинета, бросился к нему и, обняв, воскликнул: «Я только что сделал великое открытие!» А заключалось оно в том, что давно известная неактивная виноградная кислота – это просто смесь равных количеств также известной «правой» винной кислоты и ранее не известной «левой». Именно поэтому смесь не обладает оптической активностью. Для такой смеси стали применять название рацемат (от латинского racemus – виноград). А два полученных Пастером антипода винной кислоты получили название энантиомеров (от греч. enantios – противоположный). Пастер ввел для них обозначения L- и D-изомеров (от латинских слов laevus – левый и dexter – правый). Позднее немецкий химик Эмиль Фишер связал эти обозначения со строением двух энантиомеров одного из наиболее простых оптически активных веществ – глицеринового альдегида ОНСН 2 –СН(ОН)–СНО. В 1956 по предложению английских химиков Роберта Кана и Кристофера Ингольда и швейцарского химика Владимира Прелога для оптических изомеров были введены обозначения S (от лат. sinister – левый) и R (лат. rectus – правый); рацемат обозначают символом RS. Однако по традиции широко используются и старые обозначения (например, для углеводов, аминокислот). Следует отметить, что эти буквы указывают лишь на строение молекулы («правое» или «левое» расположение определенных химических групп) и не связаны с направлением оптического вращения; последнее обозначают знаками плюс и минус, например, D(–)-фруктоза, D(+)-глюкоза.

Кроме «ручного способа», Пастер открыл еще два метода разделения рацемата на два антипода. Биохимический метод основан на избирательной способности некоторых микроорганизмов усваивать только один из изомеров. Например, грибковая плесень Penicillum glaucum , растущая на разбавленных растворах виноградной кислоты или ее солей, «поедает» только правый изомер, оставляя левый без изменения.

Третий способ разделения рацематов был чисто химический. Но для него требовалось заранее иметь оптически активное вещество, которое при взаимодействии с рацемической смесью, «выбирало» бы из нее только один энантиомер. Например, оптически активное органическое основание давало с виноградной кислотой оптически активную соль, из которой можно было выделить соответствующий энантиомер винной кислоты.

Теория оптической изомерии.

Работа Пастера, доказывающая возможность «расщепления» оптически неактивного соединения на антиподы – энантиомеры, первоначально вызвала у многих химиков недоверие. Даже сам Био не поверил своему ассистенту, пока собственноручно не повторил его опыт не убедился в правоте Пастера. Эта и последующие работы Пастера приковали к себе пристальное внимание химиков. Вскоре Жозеф Ле Бель с помощью третьего пастеровского метода расщепил несколько спиртов на оптически активные антиподы. Иоганн Вислиценус установил, что существуют две молочные кислоты: оптически неактивная, образующаяся в скисшем молоке (молочная кислота брожения), и правовращающая, которая появляется в работающей мышце (мясомолочная кислота). Подобных примеров становилось все больше, и требовалась теория, объясняющая, чем же отличаются друг от друга молекулы антиподов. Такую теорию создал молодой голландский ученый Вант-Гофф. Согласно этой теории, молекулы, как и кристаллы, могут быть «правыми» и «левыми», являясь зеркальным отражением друг друга. Простейший пример был такой. Атом углерода в органических соединениях четырехвалентен, четыре химические связи направлены от него под равными углами к вершинам тетраэдра. Если все атомы или группы атомов, находящиеся в вершинах тетраэдра и связанные с центральным атомом углерода, будут разными, то возможны две разные структуры, которые не совмещаются друг с другом вращением в пространстве. Если же хотя бы два заместителя из четырех будут одинаковыми, молекулы станут полностью идентичными (это легко проверить с помощью модели из спичек и цветного пластилина). Подобные структуры, которые отличаются друг от друга как правая рука от левой, получили название хиральных (от греч. heir – рука). Таким образом, оптическая активность – следствие пространственной изомерии (стереоизомерии) молекул.

Атом углерода, связанный с четырьмя различными заместителями, называется асимметрическим. Асимметрическими могут быть и атомы других элементов – кремния, азота, фосфора, серы. Однако оптически активными могут быть и соединения без асимметрических атомов углерода, если они могут существовать в виде двух зеркальных изомеров. Молекула будет асимметрической, если в ней нет ни одного элемента симметрии – ни центра, ни осей, ни плоскости симметрии. Примером может служить молекула аллена H 2 C=C=CH 2 , в которой имеются два различных заместителя: R 1 R 2 C=C=CR 1 R 2 . Дело в том, что эти заместители находятся не в одной плоскости (как, например, у алкенов), а в двух взаимно перпендикулярных плоскостях. Поэтому возможно существование двух зеркальных изомеров, которые никакими перемещениями и поворотами невозможно совместить друг с другом.

Более сложные отношения встречаются в случае молекул с несколькими асимметрическими атомами углерода. Например, в винной кислоте две гидроксильные группы у двух соседних атомов углерода могут быть расположены так, что молекула окажется симметричной и зеркальных изомеров у нее не будет. Это приводит к образованию еще одного, оптически неактивного, изомера, которых называется мезовинной (или антивинной) кислотой. Таким образом, дигидроксиянтарная кислота может находиться в виде четырех изомеров: правовращающего (D-винная кислота, которую в медицине называют виннокаменной), левовращающего (L-винная кислота), оптически неактивного (мезовинная кислота), а также в виде смеси L- и R-изомеров, то есть рацемата (i-винная, или виноградная кислота). Оптически активные винные кислоты при длительном нагревании их водных растворов рацемизуются, превращаясь в смесь антиподов.

Еще сложнее обстоит дело, когда асимметрических центров у молекулы множество. Например, в молекуле глюкозы их четыре. Поэтому для нее теоретически возможно существование 16 стереоизомеров, которые образуют 8 пар зеркальных антиподов. Они давно известны химикам; это сама глюкоза, а также аллоза, альтроза, манноза, гулоза, идоза, галактоза и талоза. Многие из них встречаются в природе, например, D-глюкоза (но не L-глюкоза, которая была получена синтетически).

Если в веществе поровну «правых» и «левых» молекул, оно будет оптически неактивным. Именно такие вещества и получаются в колбе в результате обычного химического синтеза. И только в живых организмах, при участии асимметричных агентов (например, ферментов) образуются оптически активные соединения. Конечно, тут же возник вопрос о том, как же появились на Земле такие соединения, например, та же природная правовращающая винная кислота, или «асимметричные» микроорганизмы, питающиеся только одним из энантиомеров. Ведь в отсутствие человека некому было осуществлять направленный синтез оптически активных веществ, некому было разделять кристаллы на правые и левые! Однако подобные вопросы оказались настолько сложными, что ответа на них нет и поныне. Например, никто не знает, почему почти все природные аминокислоты, из которых построены белки, относятся к L-ряду (S-конфигурация), а их антиподы только изредка встречаются у некоторых антибиотиков.

Теория Вант-Гоффа далеко не сразу завоевала признание. Так, выдающийся немецкий химик-экспериментатор Адольф Кольбе, (его именем названо несколько органических реакций), опубликовал в мае 1877 года язвительную статью, в которой резко отрицательно отозвался о новой теории. К счастью, Кольбе оказался в явном меньшинстве, и теория Вант-Гоффа, заложившая основы современной стереохимии, завоевала общее признание, а ее создатель в 1901 стал первым лауреатом Нобелевской премии по химии.

Эта теория позволила объяснить многие химические явления. Например, в реакциях замещения атомов галогенов на гидроксильные группы: в оптически активных алкилгалогенидах R–X + OH – ® R–OH + X – (X – атом галогена) в некоторых случаях оптическая активность исчезает, в других – сохраняется, но меняет знак. Оказалось, что эта реакция может идти разными путями. Первый механизм включает диссоциацию галогенида с образованием промежуточных ионов R + , которые быстро соединяются с анионами ОН – , давая продукт реакции – спирт. Если исходный галогенид R–X имел оптическую активность, она в результате этой реакции теряется, поскольку гидроксил может подойти к промежуточному плоскому катиону с любой стороны, так что образуется смесь энантиомеров. Если же реакция идет по второму механизму, анион OH–, подходит к атому углерода со стороны, противоположной связи C–X, и «вытесняет» атом галогена в виде аниона. Если исходный галогенид R 1 R 2 R 3 C–X имел оптическую активность, она в результате этой реакции сохраняется, но знак оптического вращения меняется на противоположный. Происходит это потому, что три заместителя у асимметрического атома углерода R 1 , R 2 и R 3 , находящиеся, как и атом галогена, в вершинах тетраэдра, при подходе атакующего агента – гидроксила меняют свою конфигурацию относительно четвертого заместителя; такое изменение конфигурации аналогично выворачиванию зонтика на сильном ветру.

Оптическая изомерия и жизнь.

Химики часто относятся к энантиомерам, как к одному соединению, поскольку их химические свойства идентичны. Однако их биологическая активность может быть совершенно различной. Это стало очевидным после трагической истории с талидомидом – лекарственным средством, которое в 60-е годы 20 в. врачи во многих странах прописывали беременными женщинами как эффективное снотворное и успокаивающее. Однако со временем проявилось его ужасное побочное действие: вещество оказалось тератогенным (повреждающим зародыш, от греческого teratos – чудовище, урод), и на свет появилась масса младенцев с врожденными уродствами. Лишь в конце 80-х годов выяснилась, что причиной несчастий был только один из энантиомеров талидомида – его правовращающая форма. К сожалению, такое различие в действии лекарственных форм раньше не было известно, и талидомид был рацемической смесью обоих антиподов.

В настоящее время многие лекарственные средства выпускаются в виде оптически чистых соединений. Так, из 25 наиболее распространенных с США лекарств только шесть являются нехиральными соединениями, три – это рацематы, остальные – чистые энантиомеры. Последние получают тремя методами: разделением рацемических смесей, модификацией природных оптически активных соединений (к ним относятся углеводы, аминокислоты, терпены, молочная и винная кислоты и др.) и прямым синтезом. Например, известная химическая фирма Merck разработала способ производства гипотензивного препарата метилдофа, включающий самопроизвольную кристаллизацию только нужного энантиомера путем введения в раствор небольшой затравки этого изомера. Прямой синтез также требует хиральных источников, поскольку любые другие традиционные методы синтеза дают оба энантиомера в равных пропорциях – рацемат. Это, кстати, одна из причин очень высокой стоимости некоторых лекарств, поскольку направленный синтез только одного из них – очень сложная задача. Поэтому не удивительно, что из более 500 синтетических хиральных препаратов, выпускаемых во всем мире, примерно лишь десятая часть являются оптически чистыми. В то же время из 517 препаратов, полученных из природного сырья, только восемь – это рацематы.

Необходимость в оптически чистых энантиомерах объясняется тем, часто только один из них обладает требуемым терапевтическим эффектом, тогда как второй антипод может вызвать нежелательные побочные эффекты или даже быть токсичным. Бывает и так, что каждый энантиомер обладает своим специфическим действием. Так, S(–)-тироксин («левотроид») – это природный гормон щитовидной железы. А правовращающий R(+)-тироксин («декстроид») понижает содержание холестерина в крови. Некоторые производители придумывают для подобных случаев торговые названия-палиндромы, например, Darvon и Novrad.

Чем же объясняется различное действие энантиомеров? Человек – существо хиральное. Асимметрично и его тело, и молекулы биологически активных веществ, из которых оно состоит. Молекулы хиральных лекарств, взаимодействуя с определенными хиральными центрами организма, например, ферментами, могут действовать по-разному в зависимости от того, каким именно энантиомером является лекарство. «Правильное» лекарство подходит к своему рецептору, как ключ к замку и запускает желаемую биохимическую реакцию. Действие же «неправильного» антипода можно уподобить попытке пожать правой рукой правую же руку своего гостя.

Если лекарство – рацемат, то один из энантиомеров может в лучшем случае оказаться индифферентным, в худшем – вызвать совершенно нежелательный эффект. Вот несколько примеров. Так, антиаритмическое средство S(–)-анаприлин действует в 100 раз сильнее, чем R(+)-форма! В случае верапамила оба энантиомера обладают сходным эффектом, однако его R(+)-форма обладает значительно менее сильным побочным кардиодепрессивным эффектом. Применяющийся для наркоза кетамин может у 50% пациентов вызвать побочные эффекты в виде возбуждения, бреда и т.п., причем это присуще в основном только R(–)-изомеру, а также рацемату.У антигельминтного препарата левамизола активен в основном в S(–)-изомер, тогда как его R(+)-антипод вызывает тошноту, поэтому в свое время рацемический левамизол был заменен одним из энантиомеров. Но, оказывается, экономически не всегда имеет смысл синтезировать чистые изомеры. Например, для широко применяющегося анальгетика ибупрофена под действием ферментов возможна изомеризация терапевтически неактивной R(–)-формы в активный S(+)-изомер, поэтому в данном случае можно использовать значительно более дешевый рацемат.

Разное биологическое действие «правых» и «левых» изомеров проявляется не только среди лекарственных средств, а во всех случаях, когда хиральное соединение взаимодействует с живыми организмами. Яркий пример – аминокислота изолейцин: ее правовращающий изомер сладкий, а левовращающий – горький. Другой пример. Карвон – вещество с очень сильным ароматом (человеческий нос способен почувствовать его при содержании в воздухе всего 17 миллионных долей миллиграмма в литре). Карвон выделяют из тмина, в масле которого его содержится около 60%. Однако точно такое же соединение с тем же строением находится в масле кудрявой мяты – там его содержание достигает 70%. Каждый согласится с тем, что запах мяты и тмина вовсе не одинаковы. Оказалось, что на самом деле карвонов два – «правый» и «левый». Различие в запахе этих соединений показывает, что клетки-рецепторы в носу, ответственные за восприятие запаха, также должны быть хиральными.

Вернемся теперь к формуле, изображенной на собаке и волке. Пеницилламин (3,3-диметилцистеин) – довольно простое производное аминокислоты цистеина. Это вещество применяют при острых и хронических отравлениях медью, ртутью, свинцом, другими тяжелыми металлами, так как оно обладает способностью давать прочные комплексы с ионами этих металлов; образующиеся комплексы удаляются почками. Применяют пеницилламин также при различных формах ревматоидного артрита, при системной склеродермии, в ряде других случаев. При этом применяют только S-форму препарата, так как R-изомер токсичен и может привести к слепоте.

Теория Вант-Гоффа далеко не сразу завоевала признание. Так, выдающийся немецкий химик-экспериментатор Адольф Кольбе, (его именем названо несколько органических реакций), опубликовал в мае 1877 года язвительную статью, в которой резко отрицательно отозвался о новой теории. К счастью, Кольбе оказался в явном меньшинстве, и теория Вант-Гоффа, заложившая основы современной стереохимии, завоевала общее признание, а ее создатель в 1901 стал первым лауреатом Нобелевской премии по химии.

Илья Леенсон

Теперь уже необходимо рассмотреть явление оптической изомерии. Ниже кратко описано это явление, а также приведено несколько примеров оптически активных комплексов металлов. Оптическая изомерия была открыта давно. Классические эксперименты, проведенные в 1848 г. Луи Пастером, одним из самых знаменитых ученых, показали, что натрийаммонийтартрат существует в двух различных формах, отличающихся формой кристаллов. Пастер смог их разделить вручную.

Водные растворы двух изомеров обладают способностью вращать плоскость поляризации света (поляризованный луч - луч света, колебания в котором происходят в одной плоскости) либо вправо, либо влево. Это свойство изомеров называют оптической активностью, а сами соединения - оптическими изомерами; одно из них назвали правым (d - dextro) , а другое - левым (I - levo) изомерами. Степень вращения плоскости поляризации обоими изомерами одинакова, только d-изомер вращает ее слева направо, а l-изомер - справа налево. Следовательно, в растворе, содержащем оба изомера в равной концентрации, вращения плоскости поляризации, вызываемые этими изомерами, компенсируют друг друга. Такую смесь называют рецематом . Так как этот раствор не вращает плоскость поляризации света, он не активен.

Какое же свойство молекулы или иона делает их оптически активными? Теперь можно дать ответ - асимметрия (отсутствие симметрии). Симметрия оптических изомеров аналогична симметрии правой и левой рук, ног, перчаток или ботинок. Имеется и более тонкое различие в строении: относительные положения большого и остальных пальцев на каждой руке одно и то же, и все-таки обе руки различны - одна является зеркальным изображением другой. Аналогичное положение должно иметь место, если молекула или ион оптически активны. Чтобы молекула или ион были оптически активными, нужно, чтобы они не имели плоскости симметрии, т. е. чтобы нельзя было их разделить на две одинаковые половины. При попытке решить, будет ли данная структура оптически активной, можно использовать иной критерий: для этого необходимо сравнить структуру с ее зеркальным изображением. Если структура и ее зеркальное изображение будут различны, то она будет оптически активной. d- и l-Изомеры данного соединения называют энантиоморфными или энантиомерами , что означает "противоположные формы". Вообще же они имеют одинаковые химические и физические свойства. Различие их заключается только в направлении вращения плоскости поляризации света. Это свойство позволило их открыть и различить. Для этой цели используют очень простой прибор - поляриметр.

Интересно отметить, что иногда физиологическое действие энантиомеров очень различно. Так, l-никотин, содержащийся в природном табаке, значительно более токсичен, нежели d-никотин, синтезированный в лаборатории. Их специфическое действие приписывают асимметричному расположению реакционноспособных групп в биологических системах. Так как энантиомеры очень похожи и обе формы вступают в химические реакции всегда в равных количествах, то для их разделения требуется специальная техника. Процесс разделения называется рацемическим расщеплением. Некоторые методы рацемического расщепления описаны в разд. 10 гл. IV. Часто чистый оптический изомер способен превратиться в рацемат; этот процесс назван рацемизацией.

Самым простым примером асимметричной молекулы является тетраэдрическая структура, в которой центральный атом окружен четырьмя разными атомами или группами. Среди органических соединений известно много молекул такого типа. Аминокислоты XIV и XV являются примером строения оптических изомеров. Тетраэдрические комплексы металлов обычно очень реакционноспособны, поэтому их чрезвычайно трудно получить в изомерных формах. Первое сообщение о получении тетраэдрического комплекса металла с четырьмя различными лигандами было сделано в 1963 г., но его рацемическое расщепление пока не осуществлено. Однако комплексы, содержащие два несимметричных бидентатных лиганда, могут быть рацемически расщеплены на оптически активные формы. Оптически активные изомеры этого типа известны для комплексов Ве(II), В(III) и Zn(II). Энантиомеры β-бензоилацетоната бериллия(II) имеют строение XVI и XVII. Надо отметить, что для оптической активности не требуется четырех различных групп вокруг центрального атома; единственным требованием является различие молекулы и ее зеркального изображения.


Плоские квадратные комплексы очень редко оптически активны. В большинстве случаев (например, в комплексах типа ) плоскость молекулы является и плоскостью симметрии.


В противоположность системам с координационным числом четыре шестикоординационные комплексы дают много примеров оптической изомерии; очень часто они встречаются среди соединений или ионов типа [М(АА) 3 ], например оптические изомеры триоксалатного комплекса хрома(III), XVIII и XIX. Бидентатные лиганды обычно содержат атом углерода, но известны по крайней мере три оптически активных, чисто неорганических комплекса. Один из них был приготовлен Вернером для доказательства того, что оптическая активность этих систем обусловлена не атомом углерода. Чтобы это продемонстрировать, он использовал мостиковый комплекс XX, в котором бидентатным лигандом служит дигидроксокомплекс XXI. Возможность рацемического расщепления комплексов типа [М(АА) 3 ] на оптические изомеры явилась прекрасным доказательством их октаэдрической конфигурации. Ни тригональные призмы, ни плоские структуры не показали бы оптической активности (табл. 5).


Другой часто встречающийся тип оптически активных комплексов имеет общую формулу [М(АА) 2 Х 2 ]. В этих системах важно отметить, что транс -изомеры имеют плоскость симметрии и не могут быть оптически активными. Таким образом, если комплекс оптически активен, то ему определенно можно приписать роструктуру. Этот способ доказательства строения используют довольно часто; например, идентификация цис- и транс -изомеров новых комплексов дихлоро-бис -(этилендиамин)родий(III) была проведена этим методом. Один из изомеров + может существовать в неодинаковых формах, одна из которых будет являться зеркальным изображением другой; эти формы были получены (XXV, XXVI) и применены для доказательства цис-цис -структуры комплекса.


Известно много примеров этого типа и для комплексов платины(IV).


Полидентатные лиганды могут также вызывать оптическую изомерию в комплексах металлов. Один из многих таких комплексов - d- и l-Co(EDTA)] - (XXVII и XXVIII).


Ни в одном из приведенных выше примеров оптическая активность не вызвана наличием шести различных лигандов вокруг центрального атома. В комплексе, содержащем шесть различных лигандов, центральный атом координирует их асимметрично; каждый из его пятнадцати пространственных изомеров рацемически расщеплялся бы на оптические изомеры. Таким образом, одна форма имеет оптические изомеры XXIX и XXX.


Однако рацемическое расщепление комплекса этого типа пока не осуществлено.

В заключение следовало бы заметить, что обозначение оптических изомеров d и l имеет смысл, только если известна длина волны использованного света. На рис. 24 ясно показано, что оптический изомер может вращать плоскость поляризации света вправо при одной длине волны и влево при другой. Наличие зеркального изображения для изомера обусловливает и зеркальную кривую. Графически выраженная зависимость оптического вращения от длины волны света называется кривой вращательной дисперсии. Она имеет большее значение и более полезна, чем данные просто об оптическом вращении для одной длины волны. Точную конфигурацию (+) Na - [Со(en) 3 ] 3+ определили, изучая дифракцию им рентгеновских лучей. Затем, применяя ее 8 качестве стандарта, можно было определить точные структуры других комплексов сравнением их кривых вращательной дисперсии.

>
Рис. 24. Кривые вращательной дисперсии и структуры оптических изомеров [Со(en) 3 ] 3+

Понравилась статья? Поделитесь с друзьями!